A T8 06 .

7929

;l'&:lzu .

’ W
N e
loff

-~

s

{7 Classifie

LAke Secuw

Lopy No.

[

24

—

Q.

§I'
A

1

lq=s

S20) %d‘ij
. B

-52

S eeesTRTTES - R.M__}\I_o; ATBO8 :

RESEARCH MEMORANDUM

' THE CALCULATION OF DRAG FOR AIRFOIL SECTIONS AND |
| BODIES OF REVOLUTION AT SUBCRITICAL SPEEDS
| | ) Ma.x A Heaéiet a.nd Gera.ld E. Nit’zber_g' _
i - ~ * Ames Aeronautical Laboratory o
N

Moiffett Field, Calif.

AFM"C
ZTECHNIC. L 1o

AFL 2811

il \

NATIONAL ADVISORY COMMITTEE
e FOR AERONAUTICS

- == . -‘WASHINGTON
- - April 23, 1947

(2%

Wi

AN ‘gdV) AHYHEIT HO3L

=

4

C
B



Lk

Recy to Ann of

"
»

National Aeronautics and
Space Agmunistration

Langley Resosrch Ceanter
Hampion, Virginia
23685

1384

T01 Distribution

N . -

JUN 1 6 1em3

FROM3 1808/8acurity Classification Officer

8UBJECT: Authozity to Declassify NACA/RASA Documents Dated Prior to

Januazy 1, 1980

i

el Cataites

Effective thim fate, all maearial‘ollssified by this Cantezr prior to
January 1, 1960, ix declassified.” This acticn doex not inolude material
derivatively classified at the Center upon instructions from other agencies,

Inmediate re-marking ia not required; howsver, until material is re-marked by
lining through the classification and annctating with ths foliowing l:atemcnt.
it must continue to be protcatnd as if classified;

"peclassified by authority o£ LaRG Security Claszification Qfficsr (5C0)

letter datesd June 16, 1943,"
re-marking.

and the signature of person pecforming the

If re-marking & large amount of matecial s desirable, but undoly burdensome,
eustodians may follew the instructions contained in NHB 1640,.4, subpart F,

saction 1203,604, paragraph (h}.

This declassification action complements earlier actions by the Natienal

Archives and Records Ssrvice (RARS) and by the NASA Security Classifications
Qfficer (8CO). In Declassification Review Program $07008, NARS declaxsified
the Center's “"Research Authorization™ £1iles, which contaln reports, Resexrch
Authorizations, corcespondence, photegraphs, and other documentation,
Baclier, in & 1971 letter, the NASA 5C0 declassified all NACA/NASA formal
feriag documants with the excaption of the £ollowinq reporta, which must

zamain classified:

Dogument No.

B-51a30
E2=-33G20
E~53G2]
E-53x18
BL~-547212

L

&

. eo'd Axvuail HogL v

Pirgk Author

Nagey
Franecisco
Johnson
Spooner
Westphal
Fox
Himmel

'JQH £ 31833

&gz beg eg

62:1F L66T7-S0-S0

-



If you have any questions concerning this matter, please call Mr. William L,
Eimkins at extension 3281,

Sedi—

oistribution:
SDL 031

ecs

NASA Solentific and Technical
Informaticn Facility

?.C. Box 8757

BNT Aflrport, gm 21249

NASA--NIS-5/f8ecurlity T

180A/RIAD .

uea/muo _
N ied > . .

xaowx.i‘fmk'&suu os/1s/ax ). o 1T

139&53\} 6-45' LIRS

R

o

-

61T 208 ROl dOLS YK

¢+ INY[ *€8IH
SNDILYZINYOUG J0 $aYaH (0~iF

ge d A¥vHE1T] HO3L U SAEZ b98 o8 62:3T LEB8T-50-R

- wae—



[T W RRFYRTTY B

l]llﬂllﬂllﬂllllll i

00L9281

RACA RM No. ATBOG R
NATTIONAL, ADVISORY COMMITTEE~FQR AERONAUTICS

- RESEARCH MEMORANDUM

THE CALCULATTON OF DRAG FOR AIRFOIL SECTIONS AND
"~ BODIES OF REVOLUTION AT SUBCRITICAL SFEEDS

By Max. A. Heaslet end Gerald E. N*tzberg

SUMMARY

A method 1s developed for calculst” :g the dreg, in a real
compressible fluid and at subecritical Mach numbers, of sirfoil
sections at arbitrary 1ift coefficients amd of bodies of revolu—
tion at zero angle of attack. To apnly ths method it is necessary
to know the velocity distribubtion for airfoils and the velocity and
thickness distributions for bodies of revolutlion, together with the
Mach number of the free~stream transition point from laminar to
turbulent flow, and the Reynclds number based on chord or axial
length. The method consists of tracing the growth of momsntum
thickness along the surface, for both the lsminar and turbulent
boundary layers, by means of relations which ihvolve elementary
integrals and can bes evaluated by simple numericel mesns. An .
outline of the compuyational procedures reguired for drag calcula-
tiona is presented in the avpendix to the report.

The values of drag coefficient, computed by the method of the
present report for a number of cases, are compared with the values
obtalned for the sams configurations by other methods and the dif-—
ferences between the various results ars found to lie within the
1imits of accuracy of current experimental techniques. ' The use of
the present meothod is recommended by its simplicity and gsnerality.

: INTRODUCTION

Starting with the work of Prandtl (reference 1), which was
designed to determine the skin friction on & pointed flat plate in
a uniform incompressible two-dimsnsional flow, the theory of drag
calculations has been extendsd by severa’. inveatigators so that,
under controlled conditions and at speeds whsre eir may be assumed
an incompreasible medium, very good agreement has been obtained
with experiment for both airfoll sections and streamlined bodles
of revolution. The calculation of drag is, however, limited to
cases for which it is possible to estimate the location of the
transition point, that is, the point at which the laminar boundery
layer over the forward portion of the body is tsrminated by the

BEREESeS
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onset of turbulent flow, and for whioch there 18 no extensive separa~
ticn of the turbulsnt boundary layer.

In the present report the compreesibility of the msdium is
congidered and exproesions for profile dirag of alrfoll sections
end bodies of revolution at subcritical Mech numbers are given in
forms which are particulsrly amenable to numerical calculation.

The principal comtribution, however, is contained in the treatmsnt
of the turbulent boundary layer in the two cases. As in previous
work on this subject, the snlutions consist essentially of inte—
grals of the Kdrmdn moment . eguation for bodies in two—dimensional
flow and for flow over three—dimensional bodles with axial symmetry.
In reference 2, Squire and Young svlve the problem for incompressible
flow in two dimensions by means of a voint -by—point method of
integration requiring considerable labor, and in references 3, k,

5, and 6 modifications 3f the Squire and Young method are given in
various forms which expedits the cal:sulations. All these references
glve results which are in closs azreoment. The method of Kalikhman
in reference 6 is of particular interest for it 1is capable of
generalization to the body of revolution and to the cass of high-
speed flow where density <hanges are of sufficient magnl!tude that
they must be taken into gccount. This approach is adopted in the
present report. )

The var*OLs procedures whi"h have been daveloped for predict—
ing the growth of the turbulent boundary layer over an ajrfoll are
all based on the same boundary-layer mamentum eguetion. In order
to apply thlse equation it is necsssery firat to relate the skin-
friction coefficlent to the boundary-layer momentum thickness. On
the basis of experimental data for flat plates two such relationships
have been evaluated: a power law {reference 7) and a logarithmic
law (references 8 and 2). After comparison with the experimental
data shown by Falknar in reference 7, for Reynolds numbers bstween
2 x 10% ana- 5 x 107 , it appears that thers is little significant
difference in the numerical velues of these two relations, when the
gcatter of the experimental dsta is teken into consideration- The
logarithmic law can be gensralized nsagily to the case of compress—
ible flow and is used in the analysis of thie report.

The logarithmic relationship betwsen the skin—friction coeffi— .
cient and the boundary-layer momentum thickness was combined by
Squire and Young with the boundary~layer momentum equation to
obtain the section drag of airfoils. Tha step-by-—step integration
of the fundemental equation was first avcided in reference L where
it was found that a considerable simplification can be achieved by
dividing the velocity distribution over the alrfaoil into segments
in each of which the chordwiso velocity gradlent is relatively
congtent. Then, using an average valuo of the ‘velocity gradlent
for each segment, it was found possibls to construct a general graph
from which the solution for any velocity distribution can be read.
The awthors of the present report were able to generalize the method
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of reference L to the case of compressible flow over airfoll sections
but the results beve never been published. It was thought that ths
closed form in which the present results are gliven, together with
the duality which it was possible to establish between the two- and
three—dimsneional cases, moak: the latter approach preferable.

The powar law relatilonship postuleted by Falkner has been used
in reforence 3 by Holt to cbtaln & directly integrable relation for
the turbulent boundery-layer growth. By msans of a theoretical
approach based on experimental results Tetervin (reference 5)
related the skin—friction coefficient and boundary—layer momentum
thicknese in a more complex form whl ch varied with the boundary-
layer Reynolds number. Approzimating this expression, over the
range of integrstion, by e power law, Tetervin was able to sxpress
the growth of the turbulent layer in s menner somewhat analogous
to that of Holt. The final forms resulting from this method of
approach share with the present results for the bturbulent layer the
advantage of being in clossd form. In reference 9 Tetervin has
extonded his method to include both two— and three-dimensional
compressible flow.

In the wvicinity of the airfoil leasding edge there is always
8 mors oOr less extenslive region of laminar boundary—layer flow.
For airfoils st f£light Reynolds numbors the laminar portion of the
boundery layer contributes a minor portion of the total section drag;
howsver, the amount 1s usuzlly not negligible, In reference 10,
Young a.nd. Winterbottom preesnt a msthod for laminar dboundery—layer
calculations which inciudes compressibility effects. ' The dsrivation
of their method is comparable to-that of reference 1l. There are,
however, two significant differences: First, roference 10 1s based
on Pohlhausen's relationship for ths velocity variation through the
boundery layer, whlle refercnce 11 usss the Blasius velocity profile;

and, second, reference 10 neglecte the fact thet for sir Prandtl's
number is not equal to unity. The method of reference 11 is used

in the present repcrt.

Most of the theoretical and experimental work on bodies of
revolution to date has been on airship shapes. With the present
trend, howsver, toward leorgs lend-baged alrplanes, particularly
those with pressurizsd cebine, it is to bé expéected that fuselage
shapes wlll eporoach bodies of revolution. The problem of studying
the boundary-layer growth and the drag of bodles of revolution thus
"tokes on increased significance while at the same tlme 1t becomes
necessary to generalize the procedure to include the sffects of
comprossibility. The development of the laminary boundary layer
over bodies of rsvolution in a compressible fluld is given In
refersnce 11 and the theory given there 1s applied dlrectly in the
present report. The momentum squation of the turbulent boundary
layer ia given by Young in reference 12 for zero angles of incldence
end a step—by-step msthod of integration is presented whereby the ]
growth of the boundary layer moy be determined for incompressible P

st i
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flow. The boundary-layer equations, for both turbulent and laminar
flow, are more complicated for the body of revolution than for an
alrfoil section becauvese of the fect that 1s is necessary to take
into consideration the variation of the body radius along the axis.

Drag calculations for bodies of revolution have not been
studied as extensively as for airfoils and 1it€le previous work in
ths fleld of compressible flow has as yet been published. The
present theory 1s simller to that developed for airfoil sections
in that momentum loss in the boundary layer is expressed as a
d¢ofinite integrnl dbut daiffers in that it becomes necessary to modify
the theory over the far =ft portion of theé body. In spite of this
d1fficulty the method given does curtail eharply the amount of time
raquired for the total calculation..

A complets ligt of s&mbols; as ﬁseﬁf%ﬁfbﬁéhouﬁ’tﬁlé"rejﬁit,'
may be found in Appondix A, and tho computational procedure for
drag calculatione is presonted in Appendix B.

. T TEEORY @0 -
- Atrfoil Sections

Introductory remarks.-— In figure 1 the two-dimensionnl flow
about an alrfoil section is indicated along with the boundary layer
and wake asgsocliated with the flow. It ie an established practice,
in all theory connected with the calculation of drag, to divide the
boundary layer znd wake region into three iifferent rogimes of flow,
Thus, 1f S represents the stagnetion polnt, the boundary layer
between S and the traneitlon point at T.P, on elther surface is
lominar while between T.P. and the tralling edge at T.E, a turbulent
boundary lsyer exista. In the wake, the third reglon to be
considered, the plane AA is drawn normal to the center line of the
wake at the polint where static pressure in the wake has returned to
its original free—stream value.

It is easy to shbw, from momoentum considerations, that if
static pressure is assumed constant acroes the wnke, then the drag
D per unit length of tho alrfoil is given Dby

D = f, ou(Up - wdy - (1)
whoro the integration extends acrosg the wake in plane AA and
u  local velocity in wake
o} deneity in wake

'Uo veloclity of undisturbed stream
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¥ distance messured normal to center lins of wa.ke

Momentum 'bh* ckness of the boundary lsyer is, by dsfinition,

’ T 5 pu u
s (b @
PPN T
where
U velocity at edge of boundary layer

u _ local velocity in boimd_ary layer

¥ distance measured normal to surface

Q momentum thickness of boundsry layer
5 Dboundsry-layer thickneés ‘

py density corresponding to velocity U

and in a similer msnner the momsntwn thiclkness of the wake may be
defined. Now let
U-) & (3)

whera the Integration is in pla.rie AA and p, is denslity corresponding
to free—stream velocity U,. Since drag coefficient cg 1is fixed
by the relation

D=cdépUzc. . {4)
vhere ¢ is the chord length of the airfoll, it follows that

ey =.aga {5)

The snalysie consists essentially In tracing the growth of & ,
the momentum thickness, along the top and bottom surface of the
ajrfoil and in the wske to the plans AA. Since the nature of the
flow in thes boundary layer affecte the rate of growth of the
momentum thickness, it 1s necessary to trsat the different regimes
separately. The following development is therefore arranged to
conform with this nstural division.

Laminsr layer.— In reference 11, expressions heve been developed
which may be applied immediately to determine the growth of the
laminar boundary layer in two-dimsnsional flow of & compressible
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fluld. In thils reference the buumdary-layer thickness 43 at the
point x; i8 defined am the distance from the surface of the
airfoil to a point in the boundary layer where the ratio of the
local velocity to the velocity outeids the boundary layer is O. T07.
Nezlecting terms involving the fourth power of M, where M is
the Mach number of the free stream, the boundary—laver thickness
dl ig given by the relation

2) = 31--0 35M3] 1~1.91 { 2
(&) By { @)

" Re U;

_ : /x
-’;Gé)l <%_ (JS\ _o. 1&»& M -{‘3\ ) Uo 10,17 d(_:g) .' (6e)

(3]

where . R

Raynolds number based on chord length .

Uy velocity outside buundarj layer at point x;
U velocity outeide boundary layer at point x
x distance along eirfoil chord

In the computation-of sesction drag copfficients, inasmuch as
the laminar portion of the boundary laysr contributes a minor
portion of the total drag, it 1s practicable to simplify this
eguation. The modification will concorn itself with the last term
in equation (6a) and is Justified by the fact that the last term

contributes a small rart to the total valus of the boundary-layer
~ thicknoss 5quared. Approximnting the last term by the expression

RSB oo Oy

equation (62) may Yo rowritton as

fo( 0)1(%;)&.17 d<§) .(6b)
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Agaln neglecting terms invoiving the fourth power of M, 1t 1is
possible to show from resulis given in the reference that if

Prendtl's number Pr = 9—%“-‘ is set equal to 0.723, its valus for

free aﬁr, then

(%%.g _0.0821\1+061M [1—131(%)}! (7)

In thse ca.lnula.t‘lons that follow the basic variable will be the
nondimsnsional product of momentum thickness and density. The
valus of thie variable at the point x = x3, Independent of ths
definition of boundary-layer thiclmesa, is an irmadiate cchrsequence
of equations (6b) and (7). Thus

( U) %*‘)9 17 ’!l+Q.26 M2 {1'_ 0_92(% 2:}}
) ( )8 TTd(x,c) )

Turbulent layer.— The momentum equetion for the turbdbulent
boundary layer In comprescible flow 1s given in reference 10

as

r v, %ul, . T
.g;x E(H-FE)U*FU_—}G--QF | (3)

where the primes indicate differentiation with respect toc x,

H is a functlon of the boundery-layer velocliy-profile shape, and
T 1is the skin friction per unlt area. Undsr the assunmpiion that,
for compressible fluids,

T’_T—i'wﬁ 0 ohsh o oMt (10)

where

pUUZ
= 7T

and . 1is the coefficient of viscosity at the wall, it is
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pogsible to transfurm the egquabtiun ta the fuan nced By Y.wng and

Winterbottom . LTl

+

%}% +2.553 (B + 1)%'4 = -i%”- 10,4118 "B "0 +304E (11)

The nnmer*cal mothods used in the 1nt°gration of equation
(11) are gomewhat protraptad To chbviato this 5nbroduue now the
traneformation

g = .ﬁm ; o.éushg'&‘réb-éﬁ".ﬂg S (12)”

With this change of variasble, equation (11) becomes

z_ .y La(U/Uo) fa(x/c)] u_ Uoeoc Py
az%j + K (Ee1)ES O/Ub z -L o 3w T (13)

whexre
= 2.555 (c.zselh + %)
and the equation hes besn wr*tten 3n nondimensional form.

It is necesmary in equation (17) to relate the valus of coef—
ficient of viscosity at the wall to its value in ths free siream

Mo

ke (__)o -

where T and T are absolute termeratures in the stream and at
the wall, together with

1
T, = ‘I’O(l v 2 M?—)

which is an immediate comsequence of the assumption that energy is
congtant through the turbulent boundary layer. It follows that,
approximately, ) '

77777 TUNACA BM No. ATBOS

This follows directly frum ‘the ampir;cal relation (reference 13)

e = Mo (1 + 0.152 MB) (14)
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Setting

U_ .05 x5
UQ U’po p,C—x’

and using the spproximation for coefflcient of viscosity, equation
(13) appears in final form ' - :

8z , g (ma) (AH/ER) , - x§ P X5e (15)
ax . i) [1 + 0.152 M2]

It is poseibles to put the solution of equation (15) in & form
which is well edspted to calculations 1f conatant average values
are used for E =and K. Under this assumption, ths integral of
the difforential equation is

z =T —E(B+2) '{C + Ro k3T K(H+l)+ldi} (16)
L (1+0.152 M2}

The variable §, in the.turbulent region, lies roughly between
20 and 30 so that the total veriation of XK Is smsll gnd K has
an average value approximately egual toc 1.21. The shape factor
H varies, for & nonsaparated boundary layer, approximately from
1.3 to ebout 1.7, but from sxperience gained In other calculations
3t has been found thet com: itations for low speeds are qulte
insensitive to the value of E used and highly satisfactory -
resulte can be obtained for o constant value bf H. In the present
report K(E + 1) shall be set equal to 3. This agsumes a valus of
H between 1.4 and 1.5 which is in conformity with low—apeed
measurecments and, as shell be seen, will give computed drags in
close agreement with experiment and other calculations. There are
no availebls experimentsl measursements of velocity distributéons
through turbulent boundary lsyers at high speeds of sufficlsnt -
accuracy to permit the determination of the effect of compresseibility
on H. TLacking such informntion. the assumption will be made that
thoe szme valuss for H csn be used in the compressible case as In
the incompressible cass. Imposing the condition thet at the transi-
tion point =z = zm p_ , the arbitrary constant ¢ 1s determined end

the solution becomes

- Tp.p.\ s, 1.21 R, /‘x e N
B ZT'P'( v ) " Tie0.152 M1y oo

The density term in the integrand msy be evaluated by assuming
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the flow outslde the boundary layer is 1sentropicj thus
-
5= (1 + 2L M2 (1-732)] =L (18)
The value of z at the trensition point, which is required in

equation (17), muet be found from the velue of (55)p.p, dstermined
by equation (8). Sinca, in nondimsnsional variables,

{ =2.555 lnkl"[:b Ro 8 U)
+0.152 M2] )
where _ ln denotes nétural logarithms, then . e
z = 1.60% v 1n3w (19) |
. _ _ § _
W = 4,075 __ R, 3750 (20)

[1+0.152 M2]

Substituting from equation (8) into equation (20) thus gives W at
the transition point. In figure 2, which iz a plot of equation (19),
the required value of zq p, can.be found. If the velocity distri—

bution over the airfoil and the free—stream Mach numbsr are known
it 18 now possible to substitute directly into equation (17) and
determine the growth of the boundary layer up to the trailing edge.

Wake .~ YToung and antefbottom in reference 10 have discussed
the momentum equation in the wake and have concluded on the basis
of what experimental data ars avail&ble, ‘that

= o =5 B = 3.2
Pz 62 = -pT.E. GT.E. Up . (21)

vhere subscript 2 applies at plane AA in the wake and T.E. indi-
cates values at the trailling edge of the airfoll.

From zp g, the value of wp g, follows and the airfoil
section profile drag coefficient is given by

101x21v12 TE G o 202 22
= [1+ llp075R, T.E. (22)
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Bodies of Rovolution

Introductory remerks.—. The developmsnt of the theory relating
to the celculation of drag for a body .of -evolution is direstly
camparable to the thsory prescnted above Tor airfoil sections excoept
that the angle of attack of the body will be reatricted to zero.

In figure 3 the body ia shown; point S . repnesentirg tho stagnetion
point, T.P. indicating thn tra.r.sit* on point in the plane of the
peper, T.E. denoting the t2il end of the body, and ~A& marking the
poeition of the plane where etatic rressurs has rebturnsd to its
vglus ln the ambient stre~n.

Drog coefficient of the body is by definition

D
Cp T (23)
where .
D drag of body
U, velocity in the free stream
po density in the free streem
v voliwmn2» of body
end, from considerstions of momentum,
D = 2:rr_£f ow(U, — )y iy R

where the tntegration extends across the wa.ke-in pla.ns AA amd
u local velucity in thz wake

p dengity in the weke

¥y distance measurod normel to center line of weoke

For bodiss of revolution the momentum area ¢ vwhich is defined by
the egquation

[>) - =
& = 2x 2u (l - 3) (r + 7 cos a)dy (25)
fo PyY U

where

el thickness of the boundary laysr

—m—— -
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r radius of cross ssction of body

1o angle between tangent to generator and axis of body

occuples a role analogous to that of momentum thicknese in two-
dimensional airfoll theory. Momentum area in the wake, at the
plane AA, ls ' _

0s = 25 J 1— 2\y dy. 26
2 ) poUcJ( ):f y (2€)
whence

20

The theory which follows will also have occasion to use the
varlable 6 which is related to the momentum arse by the
expression

8 = ¢/2nr (28)

or
5

6 =-Jc.> %(l—%)(l +% cos cz.)_dy (29)

Leminar layer.— From the theory developed in referemnce 11, the
laminar boundary--layer thickness 3, dsfined as in the two-
dimensional case, at an erbitrary point x; 1is given, neglecting
terms involving the fourth power of M, by the expression

(%)é "Z—(:q:> 17< ) !5 3 1-0.75 M2L1-1 91( )2 l]
Loerass og e

vhere

U, velocity cutside boundary layer at point x3

R;  Reynolds number based on lgngth of body

r radine of cross section of body

(30a)'
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x distance measured along axis

d; boundary-lsyer thicknsss as defined for equation (6a)

1 axial length of body

Since, in genera.l the lam.nar porticn of the boundary layer
contributes a sma....l part of the total drag and since the last term
in equation (30a) represents & small part of the valus given by

the relation, it is practiceble to derive a gimplification for
(81/1)2 analogous to equation (6b). Thus,

(gl;)e @ )9.17<r11>2 1-0.35 M2 [1_-1.6—7 (%)2]

et ot W g

|

I

[ SIORON B

It cen also be shown that -if Prandtl's number 18 set equal
to .0.733 and 1f terms in M of - fourth degree and higher are
ignored, then for the Tody of mval’zrtion the fol'F owing a.pproximate
relation is obta.insd . . - .

9°U 082 :-l-+0611v12fl—131b o )}l (31)
- ) o -

_;

Grouping momentum thickness and densitv togatnsr s a.n.d. in
nondimensional form, the following equation holds ’ '

(cpo) ___0_2&3__( ) }1+026M(l oge( )2:“

A __
[ <>2<U°>8 e (%) &

Turbulent layer.— The momentum equation of the boundery
layer for a body of revolution in compressible flow is given
in reference 12 in the form
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g%(:pUU2®> + g% <ptﬂzf§ = T 2nr
where

Ay displarement ares 1n boundary layer {see definition in list of
gymbols)

T skin friction per unit of area
Setting (A*/®) = H reduces the equation for the boundary layer of

the bodles of revolution to a form simdlar to. that for airfolils.
Thus

- 1
40 +l'(H+_2) AN U]fib = = (33)
dx o R

2
AN

ths primes indicating differentiation with respsct to x.

It should be noted that the definition of H differs in the
three—dimensional case from that in two dimensions. However, in
the case where the thickneses of the boundary layer is small in
comparlson with.the local radius of the body of revolution the two
ezpressions for H are approximptely equal

The relat*on between T, p, U, and G used in the analysis
for airfoil sectlons was based on bhsory thet held for a flat
plete; that is, the pressure gradlents were lgncred in that
particular phase of the study. Since on bodies of revolution the
pressure gradients are small the same relation may be assumed to
hold, thus :

Upy | o.a9148
Hw

= 0.2h5he (3k)

where

2. o007

From equation (34) and the definition of &, i1t follows that

. o.s914

Upro
—° = 0.2k54 2nr o (35)
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and substitution of this relation into equation (33) gives

U -2 —o0.8g%al
& 2555 o, zr] U
3 *2:555 | (B+1) TR mpo L0-MIf e
Now leat - -

z = —UEMSU [ (2 = 0.2hshy 20 9970

Direct substitution into eguation (36)yields

Az ¢ xl(m) ~UTTD/AU/L) | _a(e/i)/alx/t) ]

d@.) . U0, T/l
U.p,l
- & U Yofob fg
Ko B B
whero

2.555(0.391h +_§ =K.

and the equation is written in nondimensional form.

Setting

It
=
:
I
1
ol
K
fl
il

"

Uo
and using the relation _
uoll + 0.152 M2}

Her

the final form of eq_ua.tion (38) becomea

dz x| | (B:1) (’m/""‘) (/) , Jx TR
dx r |

[1+0.152 M®]

15-

(36)

(37)

(38)

(39)

Putting again K = 1.21, K(H+l) = 3 and f£ixing the erbitrary

conatant of integration by assuming thet z = 2p p, at x =

. p
it is poseible to express the solution of equation (39) in the

form
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- —  mam

= Zp,p. (ET%%S(E%"‘E*}'EI | | i

1.21 By f — T4 —l.ml e
US[1+0.152 MB]F1.21 Ut T ax (%0)

The density term In the intsgrand s evaluated by means of the
expression

5= [1 + 2t 131 — ﬁ2)]—’:I : (41)

The dsterminstion of from the known expression for

Zp,p.

E;Eg given by equation (32), proceeds as follows: From équation -
¢ =2.555 in (h[:zzj;;MZ]U) ! :
whence L
z = 1.604 w 102w . (h2)
e : o -
- OB F57 (43)

-[1'.+o.152 M2]

Thus, from equations (43) and (32) the value of w at the transi-
tion point can be found end zgp p, 18 obtalnable from figure 2.

With this information, together with the velocity distribution

over the body snd the free-gtrearm Mach number equation (40) can be
used. to tracs ths growth of the boundary leyar aft of the transi-
tion polnt. - - ST e . L T

= —— . T Ly

One differsnce ariees 1n the computations for bodlee of revolu—
tion which distinguishes the theory from that for airfoil sections.
This is duo to the fact that r vanishes at the tail of the body
and as & consequence an infinite singularity appears in equation
(40). Because of this singularity it 1s not possibls to carry the .
integration to the tail for momentum thickness will become infinitely
large and the expression for drag coefficlent becomes an indotermi-—
nate form. To clrcumvent this difficulty it is necessary to use N
equation (4O) up to some arbitrary point, say the 80-percent point
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of the axis, and then to modify the method of calculation. For
this purpose it ie convenient to compute the growth of momentum
area regther than momsntum thicknese over the lattar porti on of the
txz"bu__ent ‘run.

Two meaens will be given whereby the momentum area can be )
calculated - The firgt, which is merely an extenslon of rafersnce 10
to the case of compresaible flow, involves g point-by-point integra.—
tlon of the basic diffsrential equation. This equation is express- -

ible nondimensionslly in the form - :

aF -4 | N
@ . | (me) & I3 |- (0.2914)" en ¥ )
ax T P T35 Ry A
1n2
, 4 0.2isk x 2nF Xx [140.152 M2]

The derivation of this expression may be obtained by combining

2
= = 20 N
;
and. :
' HE.UE = 0.2454% 2n r € 0'3.8.1-4§'
to ges N
T _ - (g 3911‘]5){ L (4s3)
Pyl yp2 PR

1 0.2454F x 2% F x-[1+0.152 M3T

which, together with equation (33), will give ths required relation.

From the velue of G and T at the 80-percent point on:.the
axtsg, the value of § c¢an be found st this point and the :.growth of
% can then be calculated over the remaining portion of the body.
In particular, 17 Qh fs the value of % at an arbitrary point
Z on the axis, -

qm+1—$ +<%j—t> A(i) )

. where %,.1 1is the value of 3 at the po*nt T + A(E) The

calcula.tion consists- of repeataed a.pplica.tions of this relation.
As the interval A(Z) in equation (46) gets. smallsr the result of



18 ' S © . .- NACA RM No. ATBO6

the calculation approaches the e_zxé.ct solution of equation (k).

Since the above calculation is to be applied over an interval
which is small in comparison with the axiasl length of the body, the
labor of such’ a calculation 1s much less- than would be required if
such methods were applied to the total turbulent run. It 1s possible,
howaver, to shorten this calculation further by assuming that
ce2n ¥ 1s a linear function of X .wherse ce = 27/p U % 18 the
local skin-friction coefficient. The validity of such an assumption
will be examined later in the discuesion.

Return now to equation (32). From the definition of skin—
friction coefficient the right-hand side of this equation is

expressible as .. L o T

et D 2ﬂfc :
T e pg (—) - 2007 I

If ce2n ¥ 1B iinear over the aft portion of tkhe body, falllng
from its value at the B0-percent point to zero at the tail, then
in nondimensional terms equation (33) can be written as

%xi + [(3.4.2) @é@ + E_éé_@l_a]-a =g (GfQIff)o.a 1-X (48)

U
This equation can be intsgrated, and as a result

_f(H+é) ~1
5 2y _

'[C +fg (cg2n ) (l—__i)ﬁH d-f] (49)

Hi
|

When 0.8, T = [N

80 that ' e e e e
: [ . H4a _
C=29%.4 Tjo.s Po.s

Using this value of C, together with squation (49},

= Ty, B+2 (55,8, 5(ce2n T‘)o.sf'i o\ Haw
6"-8("%‘3) ( ? >+ o5 T B2 J (%7 e (50)

Q.8

and, after substituting from equation (47), the value of ¢ at the
tail 18 given by the equation
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[ =-'50',e<2_'__. ) en ¥
o . \Up g, DTE 6.528 Lo 20T By GBU)
s {1+0._152.M2] 0.8

w5 i .0

Po.el% .8 - /“ (1-%) (
or T 2

7.2 U0.E.2 Jg g

(51)
UT E.

Weks . In reference 12 Young has integrated the momentum -
equation in the wake applying the sams methods used in references -
2 and 10, for the body of revolution. If subscript 2 Indlcates
values. of the varlables in the pleme AAX gnd T.E. denotes values
at the tail of the body, then it iIs shown thsat

- = - . = 8.2
F2 62 =Pp.E. Or.E. Ur.E. (52)
Since, from equation (27)

. 2o,
Cp =—37

1t Pqllows that

ch.:_ ;T'Eé ITE. 'ﬁTws.a . ‘ s (53}

\

DISCUSSION

The fcregoing theory provides a convenient procedurs for
stodying the growth of laminar and turbulent boundary layers and ;
for calculating the drag coefficients of .ailrfoils and bodies of .
revolution. dJust aps in the case of wind-tumnsl tes’ping, where 1t
is essential that the model tested be an accurate Tepresentation of
the original configuration, it is important that in the application
of this theory the operator should be able bto detérmine correctly
the required ‘aerovdynamioc properties of the configuration under
consldsration. - This implies that the pressure distribution over
the body and the extent of the laminar and turbulent layers be
gpecified or be determinable. :
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Veloclty distributions are an immediate consequence of pressure
distridbutions, for both low— and high-speed flow, so that if experi-—
mental data are gvallabls the calculations may proceed directly.

The theoretical calculation of the veldcity distribution corre—
sponding tca given shape is, on the other hand, a rather lengthy
process although such methods have been treated adequately in the
literature. . For an arbitrary airfoil section at any desired 1lift
coefficient the velocity distributign for incompressible flow can
be found by the methods of Theodorsen (reference 1k}, Allen
(reference 15) or Goldsteln (reference 16). For NACA conventional
and low-drag airfoils corresponding distributions may be found quite
easily from the tabular data glven in reference 17. At subcritical
Mach numbers the velocity distributions are calculable from low-
speed. data by means of the well-known Glauert-Prandtl or Karman—
Tsien transformaticns. For the body of revolution, methuds have
been given by Young and Owen (reference 18) and Keplan (reference 19).

The theory for the dstermination of velocity distributions is
of ¢course based on the assumption of pctential flow but, for "
airfoils, If the 1lift coefficient rather then angle of attack is
specified the calculations are sufficiently acrurate for most appli-
cationg. In refurence 20 it is shown that the effact of the presence
of a boundery layer is primarily to change the apparent angle of
attack of the alrfoll and to increase the local velocltics in the
vicinity of the trailing edge. A procedure is introduced in this
reference for estimghing tho megnitude of the change in the trailing~
edge velocity brought about by the presence of the boundary layer.
This proceduro firast estimatsa boundary-layer thicknese from the
potential theory velocity distribution and can be used in conjunc—
tion with the thscory of the present report. In the calculation of
drag coefficient, however, the nature of thuv equation is such that
the total drag coefficient computed is mérely affected to a very
small degree by moderate changes in the trailing-edge velocity, and
as 8 copsequence such a refinemsnt i1s not used when only drag coerfi-
cient is to bu found.

The determination of the location of the transition point from
laminsr to turbulent flow in ths boundary layer presents a diffi-
cult problem. At small Reynolds numbers and for smooth surfaces
transition occurg in a region cf dacreasing local volocitics where
there 1s usually a region of separated laminar flow between the
laminar and turbulent portions of the boundery laysr. However, at
Reynolds numbers greater than several million the length of this
region of separated leminar flow is of negligible sxtent so that 1t
‘1s possible to consider tr nsition as occurring et a point. Experi-
mental flight teats of asmooth alrfolls with maximum volocity in the
vicinity of ths midchord indicate that “trangition occurs when the
local laminar boundary-layor Reynolds number Ry = Udp/u attaine
a value of about 8000. The veiocity U is the local velocity
outside the boundary layer end 1t should bs noted in particular
that the characteristic length 4 used in evalunatlng this Reynolds
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numbsr is the value of d& obtained by the equation Por the laminar
boundary layer in the present report. This transition criterion
applies strictly only to the determination of whether thes transi-
tion point 1s shead of the meximum velocity point. For configura-
tions in which maximum velocity is as fsr back ss ths midchord
positlon and for which the tremsition Reynolds mmber occcurs aft

of this point, 1t Is probable that the transition point will be
close behind the maximm vslocity point. For emooth airfolls at
aengles of atteck such that there is a sharp velocity peek in the
vicinity of the leading edgs, transitlon. ocgurs behind the maximm
velocity point. . Theory and experimsnt indicate that in such cases
transition at large Reynocide mmibers occurs only after the wvelocity
hasg decreaeed between 5 and 10 percent of ths meximum velocity. the
percentege of the velodcity recovery befcre btransition ocrnurs being
greater the moré slowly the veloc: tv dehreases in the chordwise
direction.

. The preceding criter;a for the location of the trensition
point indicate the mosit resrward position that can-be expected,
that is. the probable position for smooth airfoils in low—turbulence
flow. When the surface under congideration ls rough or contains
such transition—pramoting agents as .protubersnces, waves, air
leakage, or dust particles shead of the transition point, as
predicted for idesl conditiona, it 1a to dbe anticipated that transl—
tion will move forward in the direction of such. disturbances. In
the immediate viclnity of the stagnation point, howsver, there is a
very rapid acceleration of the air so that any local disturbance
which is not sufficiently severe to-change the local velocity
distribution will be unable to cause transition to occur’ 1n this
reglon of very favorable velocity gradient.

Ay

. There &re nct sufficient experimental d&ta on the location of
the trensition point on bodles of revolution in low;turbulence
flows. Lacking such information, the most reasonebls basis for
estimating the trensition point on bodies of revolution seems to
be .to use . the sams cr*ter-.'as previously presented for airfolls.

Drag of Ajrfoil Sections .

In reference ‘2 the section drag coeff*cients, computed by the
method of that report, are presented for an extensive range of
airfoll thirknsss—chord ratios, Revnplds numbers: and transition -
point locations. A repressentative group of these cases has been
recomputed by the methods of referene L; as well es the present
report, and the resulis of these cal-ulstions are given in teble I.
It is seen in the table that the msximum d3fference existing betwesn
the three methods for obtaining -the drag coefficient is 0.0002 fur
a singls surface and is 0.000k for the total drag coefflcient for
both airfoil surfaces. There is no apnarent consistency 1n ths
nature of the deviations, however, and in only one case does the
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difference In total drag reach the valus given above. The results
of reference 4 ghould agree numerically with those of reference 2,
gince they are besed on the sams fundamental assumptions; but some
difference might be expected when comnarisons are maede with the
camputations based on the present report because of the small
change in the shaps factor E and the averaging method used to
fix the factor X. The agrsemsnt between the results should
therefore be consldered highly satisfactory and a confirmation of
the compatidility of the assumptions.

The limits of accuracy of. current methods for measwring
alrfoil section drag coefficlente 1s of the sams order of magnitude
as the differencea exlsting between the various theoretical resulis
so that it is not posseible to say which of the calculations moast
accurately predicis experimental valuss. The weke—survey method 1s
now used commonly in the determination of experimental dreg coeffi-
cient end it can certainly not be said to determine drag within the
limits needed to establish the relative accuracy of the preceding
computations even though, for & given test configuration, it may
be possible to repeat measuremsnts to & higher order of accuracy.
Any experimental check ig also complicated by the problem of
locating the point of transition from the laminar to turbulent flow
in the boundary layer. The previously montionod methods for . -
determining the transitior point cen easlly err by a few percent of
the chord length on each surface, and this can bring about an error
in the calculated section drag coefficient of the order of magni—
tude of 0.0004.

Very fow experimente have been conducted in which the location
of transition from laminar to turbulent boundary—layer flow on both
surfaces and the corresponding section drag coofficient were measured
accurately. In reference 2 the section drag coefficient
measured in flight is givern as 0.0080 for a 25~percent-~thick

section at & 11ft coefficlent of 0.25 and a Reynolds number of
be 36 and ’0 percent ‘of the chord length, from the leading edgs,
on the upper and lower murfaces, respectively. TFor this confligura—
tion the following results are given by the various listed methods
for calculating airfoil section drag coefficients:

Method = “86oticn drag coefficient
Experimental, Flight (referenc; 2) | | _ 0.0080
Squire and Young (reference 2) . . _ . 0079
Nitzberg (reference 4) L0077
Holt (reference 3) ' _' - '.:“I;_ B .0076
Totervin (réferéﬁc;-5) o | T ;6077

Present report h ' - .0080
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These valuss are g1l within the probahle limits of accuracy of
experiment. :

The drag coefficient for an NACA 0012 alrfoil at zero angle
. of attack and the corresponding trans?tion—point locations have
been measured at a. number of Reynolds numbers. These measurements
sre tabulated in reference 5 along with the theoretical drag
coefficients cobtained by several theoretical wathods.. The results,
together with. the numerical values calculated as inﬂtcated in the
present report ‘sre present:d in table II. It is believed that the
differences between the numericsl values of ‘the various methods
leave littls choice as to the relative accuracy. Any decision to
use olle method in preference ‘to ths others must rest, for the
present, on convenience of application. The procedure of the
present report requires no approximations to the veloclity distri—
bution over the airfoil and it is readily applied to calculating
both the growth of the laminsr and turbulsnt boundery 1ayers as
well as compubting airfoil section drag coefficienu.

The calculation of girfoil section drag coefficisent for
eirfoils at speeds requiring the inclusion of compressibiliity
effects was first given by Young and Winterbottom (reference 10).
The single numerical example considered 1n thils reference is an
18.5-percent--thick symmstrical Joukowaski section at zero angle of
attack. The assumption was made that the transition point is G.k
percent of, the- chord from the leading edge and that the Reynolds
number is equal to 107. Veloclty distributions were used for
potential flow and at a Mach number of 0.685. For these two cases
the calculated drag coefficients were 0.0089 and 0.0091, respectively,
while the present report gave, for the geme data, the values 0.0089
and 0.0093. Thus, both methode indicate that at subcritical Mach
numbers the introduction of compressibility effects into the compu-—
tations brings sbout only a slight increase in the ajirfoll section
drag coefficient. .

Drag of Bodies of-Revelution

The problem of bouné .ry—layer growth and the determination-of
dreg coefficient for bodies of revolution is more complex then for
airfoil sections, since it is necessary to teke into consideration
the dimensions of the bedy as well as the velocity distribution.
The method dsrived in the present report furnishes a procedure
which parsllels closely the anglysias derived for en sirfoil section
and, with little increase in intricacy, embraces compressibiliiy
effects. In order to compars resulita obtainad by the present mothod
with results glven in refersnce 12, drag coefficients of the Akron
eirship shape were computed at a variety of Reynolds numbers and
transition points: These results are presented in table IIT along
with the corresponding drag coefficients obtained by Young for the
game configurations. (For conyenipnns of comparison, .Young's ’
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convention of basing the drag coefficient on the body surface area
wag adopted. This convention differs from those used by the NACA
vhich bases the drag cosfficient on efither the volume to the two—
thirds power or on the projected frontal arsa.) It is noted that
for treansition points far forward the difference between the results
for identical configurations, as cbtained by the present method and
that of Young, Incremses with the Reynolds number. This immlies
that the difference between the two methods arises in the calcula—
tion for the turbulent layer and is probably brought about by the
uso of the averaglng method assoclated with the local skin—-friction
coofficlent.

Very few experiments have been conﬁuctad on bodies of revolu—
tion at zero angls of attack to determins the location of transi-—
tion and the corresponding drag coefficlient: In reference 21 the
drag-coefficient measurements for the Akron alrship shape at three
Reynolds numbers of the order of 10,000,000 ars given. Boundary--
layer surveys indlcated that in each of thesp three cases the
trangition from laminar to turbulent boundary—leyer flow occurred
at 7 percent of the body longth from the lesading edge. In
roference 22 drag coefficients are given at the same three Reynolds
numbers for a metal body of virtually the same shape. These latter
measurements are considerably largsr, a fact which 1s difficult to
axplain bacause the pressure distribution over the forward 5 percent
of the body is o very favorable that at these moderate teat Reynoldas
numberg 1t 1s improbeble that transition could move significantly
ahead of the T-porcent Btation. For the sserles of measurements
reference 22 indicates that the wind-tunnel-interference effect was
of minor importance. The wooden model was of polygonal cross
section; whereas the metal model was a trus body of revolution but
this would seem to bo unimportant. Assuming that transition
occurred at 7 percent of the body length from the leading edge and
using the expoerimental pressure distribution of reference 21, the
drag coefficient of the Akron shape was calculated at ths three
teset Reynclds numbers.

In the following table the calculated valusa are comparod with
the two eets of experimsntal values,

Reymolds . 1353 %108 | 15.0 x 108 | 17.3 x 10°
number : _

‘Wooden 0:0198 0.0193 0.0190
modsl T .

model - 0228 0223 .0219
Theory or2e ' 0217 . 0212

e
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It is seen that ths calculated values 1lie between the 'bwo sets of
experimsntal data.

- Raw data from wind—tu:msl sxperimenta on bod.*es of revolution
gonerally indicabte a change in the sbsolute walus of the pressure
cosfficient as the Mach number increases but the msgnitude-of this
Increase is such that it may very well be attributebles to wind—
tunnsl--wall effects. There is a differsence of opinion between
variocus authors as to the effects of compressibllity on the velocity
distribution over bodies of revolution for snalyses have besn
prasented both affirming end denying thet pressure cosfficients
rise with- 1n.crea.sing Mach mumbers. These dlfferences have been
resolved by J. G. Herriot. In referencs 23 he ghows by means of
linear perturbation theory that, for very slendsr streamlline bodles
of revolution in a uniform stream of compressibls fluid, the
pressure coefficient at the surface of the body is almost independ—
ent of Mach mumber. The egquatlions of ths prssent report, together
with the result that the velccity distribution. is independent of
Mach number, were used to determins the effect of compressibility
on the calculated drag coefficient for the Akron shape. For transi-
tion point at 25.7 psrcent of the chord from the leading edgs,
Reynolds number equal to lO and free—stream Mach number equal to
0.7, this configuration had for calculated drag coefficient the
value 0.0018k as compared with 0.00198 for ths incompressible cass.

In the presenteticn of the theory 1t was noted that the method
developed for computing the growth of the boundary layer over bodies
of revolution breaks down in the vicinity of the tail end. Vhen
the drag of the Akron shape waa being compubted it was observed that,
over a rangs of Reynolds numbers from 10% tu 10® and transition
pointes from the leadling edge to sbout the midchord position, in the
step—-by-step integration over the last 20 psrcent of the chord the
quantity cp[2r(r/t)] varied almost -limearly with x from its |
value et the 80-percent—chord station to zerc at the trailing edge.
In reference 12 this is slac shown for Reynolds numbsr equal to 108,
When this essumption was Ineerted in the differential eguation for
® 1t was possible to interrats ths equation directly and the .
results obtained by the direct integration ware in good egreement
with values obtainsd by the step-by—step integration of the original
oquation. It is belisved that for practical applications the -
simplified procedure based on the sssumption of a limsar variation
of cr [Qﬂ(r/l)] will be sufflciently precise:. However, if & body
of revolution,.with shape markedly different over the rear portion
from that of the ‘Akron, is to be investigated for a rénge of
transition polnts and Reynolds numbers it is suggosted that répre—

sentative cases be computed D using a s ong——by—-step integration
over the last 20 percent of 'l: chord. in thilis manner can

the exactrness of the assumption concerning the linear variation
of chZJ't(r/I)] be tested.
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Genereal Remarks

In certelin cases it 1s particularly dssirable to know ths
varlation of either the thickness or the displacement thickness of
the turbulent boundary layer over a curved surface or a dody of
revelution. TIn order to determine this preciesly from a knowledge
of the momentum thickness distridbution it would be nscessary, of
course, to have added information about tie variation of the shape ~

factor E and the velocity distribution through the boundary layer.

In reference 24, von Doenhoff and Tetervin have discussed certain
aspecta of this nroblem thoroughiy, and have presented an empirical
diffsrentlal equation that, when used with the momsntum equation
and the skin—friction relation, permits tracing the development of
the turbulent boundary layer to the seyparation point. The calcu—
lationg necessary for the solution of thase eqyations ars, however,
of considerable length. .

The relations in reference 2k maka it possibla to calculate
the variation of momentum thickness and doundary-layer--shape factor
accurately. For airfoils at low speeds, 18 calculation Involves
the use of three equations:

£'2 2,555 m (4075 R EE

sweo0 (B-2-278) [, g gy

iz

t2 _2.035(13_1.286)]

The first two of these equations are the basic equations of the
present report and the last equation is &n empirical relation which
was developed by von Doenhoff and Tetervin. It so happens that the
firet equation is qpite insensitive to the valuwe of H. Thus for

methnd of the present roport on tha basis ‘of "The assumption of a

conegtant value of H, is gulte accurate. Once the chordwise distri— -

bution of & 1s found the solution of the empirical equation of
reference 24 is simplified consideradbly. If the numericel integra—
tion of the third equation above givss a valus of E in excesa of
1.8 et any chordwise station in the turbulent regime, the Imminence
of turbulent separation can be suspected and the mothod of the
present report cannot be arplisd behinﬂ that station.

The presenit report treats the turbulent boundary layer in terms
of the boundary—layer momontum thicknsss, Since, for an unseparated
turbulent boundary layer a value of H, the ratioc of displacement to

S mwa
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momentum thickness, of from 1.4 to 1.5 is indicated at low speeds
and, slnce the effoct of Mach number on E has been azsumsd to bs
negligible, the value of the displecemsnt thicknesgs follows imme-
diately. In order to obtaln the boundary-leysr thicknesa, consist—
ency demands the use of the typs of velocity dlstribution which was
uged in the develomment of the logarithmic relation between the
gkin friction factor { and the bowndary-layer momentum thickness.
However, this approach involves theoretical difficulties which can
be circumvented by the following means. It hes been previously
noted thet the logarithmic relationshlp bstween the local skin—
friction coefficient and the boundary-la;»r momentum thickness
lsads to a variation of local skin-fiict.cn ccefficisnt with
Beynolds number which i1s numerically equal fto that predicted by the
pover law developed by Fallmaer in refersnce TF. This power law
relationship between local skin fricvion coefficient and boundary—
layer momsntum thickness leads to the conclusion that the variation
of velocity through the boundary laysr is relsted to the distance
normal to the smwrfece by the exprﬂssion .

U \&5/ .
Using this spproximation for the walocity profile 1t Ilmmediately
follows the boundary—layer thickness is approximately
8.4(1 + %g) times the boundary-layer momentum thicknese.

In reference I and 20 it fs shown, for a wide varisty of air—
foil sactions, that the drag coefficients and boundary—layer—
thickness distributions calsulated from the Sguira and Young equations
agree well with expesrimental valuss. - In the resulis that have been
given in the present rsport, it has been shown thatl for various
airfoil shapes and for a representative ranje of Reynolds numbers
the calculated valus of drag coefficient for each case is very close
to that obteined by previously established methods, including those
of Squire and Young. Since the method of the present report is of
the same accuracy as prsvious methode and is more general and sasily
applied, i1ts use in the calzulstion of drag coefficients and boundary-—
layer distributions is therefors reedrmondsd.

Ames Asronsutical Laboratory,
Netional Advisory Committee for Ae:r .nautlcs

Moffett Field, Calif. ' '
prs 7/ ,lewtf/:, 7/ 27 ?
Z% ﬂ Ao /f 3 Gorald E. Nitabergy
Max. A. Heaslet, ) Aeronautical Bngineer,
Physicist. o
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AT et P, ’

Donsld H. Wood,
Asronautical Engineer.
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APPENDIX A
Symbols

Goneral Terms -

T

cp local gkin—friction coafficient (ET/p

D drag of body (per unit length for alrfoil section)
thermal conductivity

M Mach numbe“ of free etream _

Pr  Prandtl's nymber /-AR{> ' -: o -

9 dynamic Jpressure of free stream (“90 2)
local_vslocitx ingide boun@ary_laysr or in wake_"

u
Us B velocity of undisturbed stream y

U local veloc*ty outsida boundaxy: laver or at edga of wake
i} nondimensional velo-.ity ratio (U/U, )

7 ratio of specifiz heats ‘[(cp/cv) = 1.h]

& boundary-layer. thickness - . ... - .- : . E

1
¢ skin-friction factor.v(pﬁUQ/T)E

Ho .goeffigienbqurvygcpsitzﬂ;ﬁ frgglgtreémlff _ _ L _

“w. coeffiCientﬁof'iis¢ogifyngﬁ_wal%.
py Gensity Just outsidp ?dundgry:lqyerL

p  density 1nside boundary'layer or ﬁéke:'

ol

nondimensional dens{ty ratio (pU/p0

T skin frlction rer unjt ares

Airfoil Sectiona

c airfoil chord

cq . section profile-drag coefficient (D/—po 20)
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H  ‘boundary-ldyer shape parameter (&% /6)

R. Reynolds num'ber based on chord length ( )
w varieble infroduced in equation (19)

x distance along air;oil chord - _

T varia.'ble x in nond.imensi onal terms (x/c)

¥ distance meassured perpendicularly - alrfoil surface or to
center line of waks

el

varigble y in nondimensional térms _(y/c)_ .
z veriable introduced in equa‘bion {12} .

5% d.ispla.cemen’c thicknsas | f (1 %\ cl,v“I -

/
e momentum '[:}:Licknens':sr,‘-fa .:u (l E)d?]
] momentum thickness in nond.;msnsiona.l torms (6;/(:) ’ N

Bodiss of revolution

A surface area of body R
Cy total drag coefficient (D/3og T,2A) . T

Cp total drag cosfficient (D/-o0 0,27=/%) | o

]

* boundary—layer parameter (%)
3 length of body . .-

r radius of cross sec tion of body

T radiue in nondimensional terms (r 2)

R, Reynolds number baged. on length of 'bod;f ( 9-9—1)

Vv  volume of body - s
w varia‘ble 1ntroducec1 in eq_uation (LF")

x distance maasured ‘parellel to axis of 'bod.y from- sta.gnation

point

=4

Hl

varisble x mmndimsnsiqr;al terms _(x/I)

fmm m am omm s
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distance measured perpendicular to surface or to center 1ine
of wake -

distance y in nondimensicnal terms (y/l)
variable introduced in equation (37)

anglo between tangent to genera’cor and axis of bod.y

displaf-ement ares. of bounda.ry la.yer

—_ . = PR B

[ (1 - po <r +F co; cc)cly]

displacemsnt erea of walce 1 21‘( (1 - ,9__:) r d_:ﬂ

e variebie of integration {o"2mr)
% nondimensional variable of integration {e/n) L
(momentum area of boundary layer B
| .
o ) {- fa pu (]_-....,>(r+vcos u.)dyw
momentum aresa of wake _‘_21\' —93-— (1 --5->3r dy ]
- '}f paUo Uo
) momentum aves in nondimensignal terms (£§>
Subscripts L S P
B conditions at stagnation point - _
T.E. conditicns at trailing edge of airfoil or tail of body of
ravolut.ion ’
T.P. conditions at transition point _
w condition at wall or surfaca
o free__stre&m COﬂditiOnB . S e e e e e
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0.8

conditions in lsminar boundsry leyer at arbitrary point x;

conditions at 80-percent point on axis of body of revolutlon

conditions in wake whsre static pressure is that of free stream



ST U CAPPENDIZB
Compu—f;‘bi-én Procedﬁi"e for Drag"(}a.lcul.ati:or.x-
1. Alrfoil Section at xfu:"b.‘rd',ra.r"r L* £t Coefficient
A. From- known airfoil thickness 4 giribution or pressure
. distribution determine velucity distribution cor-
responding to desired 1ift coefficient.

B Estimate transit*on—-point location oh ‘each surface by '
" the following: .

(a) For maximum velocity in vicinity of
Jeading edge, transition occurs
at chordwise station correspond-
ing to velocity decrease of from
5 to 10 percent of maximwn velocity.

(b} For maximum velocity in vicinity of mid—
chord, transition occurs near maximum
velocity point or, for largs Reynolds
:numbers, ‘whead of‘ ‘maximum velocity -

. ... . . point at chordwtee station where local
e - “boundary-leyer Reyholde number attains
" a value of about 8000.
| " | f—"f’r.?.
RBE = ._é.ﬁ_BQ_ {_’]_ - D. 35 ME[ __1_6"{ ﬁT-P.% .'i} Us.l'?d'i

ﬁT_f_.T. 1T l -

C. From stagnation point to trensition point the flow in
boundary layer ie laminar; thus at transition point

~ i 7. p.
@8)p.p.° = ot 11 + 0.26 M(1-0.92 UT . E)tf 17 ax
Re Up.p.%**7 | je°

- - - !+.'075 R. = =
D. Transform varisble to wp p, = -(68)p.p.0p. p,
A PR T s  TRTE

E. From figure 2 o’btain ZT.P. =.1.60)-I- “'T.P.lnsz.P.

F. For turbulent region, from transeition point to trailing
edge, tha growth of z ie given by

-

2pp. =2 T.P. L2k B " T'Eé'ﬁ‘» o
T.E. = Ir.P. U 275 L
T.E. " T1v0. 1501 Up.5.° %o

i T ARk . A TR
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1

) -1 -
where P = |:l + -%1 M2 (l—ﬁz):l ' ~ [l+.3é'l€2 (1-02)]

G. ALt trailing edge obtain wmp, E. cox‘rqspcnding to
zZp g, from £l gure 2. '

H. Section drag cosfficient is cbtained from

2 (l+0. 1521{2) T-"T . /T 2.2
°d = TLIOT R, (UT.E.)

2. Bodies of Revolution at Zero Ari:gle of Attack

A. Fram body thickness distribut .n-or pressure distri—
bution dotermins velocity distribution.

B. Transition from laminsr tc turbulent flow 6écurs
roughly at chordwise station where local boundary-
lgyer Reynolds number etteins a vaiue of 8GOO.

T o

. 5.3 R [ | PET.P.
Rg® = =2l 1 _J10. 35M21 1-1. o'TUT p- :l‘ - AR 17g
Up.p."""" Tp.p.® { .

0. From stagonation po‘fnt to-branaition poinc the flow 1n
boundery layer is lam; nar H thus at transition voint

3= . o3 { - o s ':_ = 2 }
8 p) 2 = o : 1 + 0.26 M2 (1-0.92 Tp.p,
( D.I'..P_-_ - RIUT.P- 9.1% -P.z .+- ( P )‘

J[ET.P- _I_‘a ﬁs'-"‘?& Lo
[o] . .
D. Transform variable to Wn.op, =

k. OTSRE_ (55

T 1500 )‘I'PUTP.

“E! From Figme 2 obtaln zp p, = 1.60k wT_P.ZnawT.P_

F. For turbulent regibzrll- from tr<asition point to 20—
percent axial station, ths growth of z 1is given
by
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T a/Fm p\l.22  1.21R
Zo.5 = ZT.P‘( LE:) (:T.__13_> . -
To.s To.m (1+0.152M2)Uq . o

*o.8 ﬁ-— : :
8 maf T _ 2L
S "_ <§Z.J - L .

3
where 7 = [1 + =L e (1-32)1

- {1+ -;- M2 (1-T%)]

G. From figure 2 cbitain w_ corresponding to 2,8 i -

H. Transform var;xable ’_co

5 = - ONF oW, 1+0.152 M2
‘:’Q 8 = 2 To '8 90 g = c,.8 o.e( _5 )
. «8 " 0. - 4.075 RyB, D, 4

I. From 80-percent axial station to trailing edge, growth
of ¢ ig found from .
= /To.e 35 ( fo.8 0.766(21F; ,g) To.al 0.8°
?p.r. *9%.8 ""—) = + = = 2
8\ Ur.E. PT.E. 1o2 (v, o) PI.E.UT.E.

.T.

/

E. .
(1-%) (ﬁi’_.. S %
0.8 T.E. _

J. The drag roefficient of the body of revolution, baged on
the volume to the two-thirds power, ls then

v2/3 2

op - ERETEE (1)



NACA RM No. ATBO6 . ) _ 35

10.

.....

Prandtl, L.: The Mecha.pics of Viscous Fluids Vol I77,
div. G of Aerodynamic Theory, W. F. Dura.nd. ed.,

Julius Springer (Berlin), 1935. :

Squire, H., B., and Young, A, D.: The Cé.lculation of tHe
Profile Drag of Aerofoils. R. & M. No, 1838, British
A.R.C., 193T. |

Holt, Maurice: c:alculation'of Wing Profile Drag. Aircraft
Engineering, vol XV, no. 176, Oct, 1911—3, pp. 278-280,

" Nitzberg, Gerald. E.: A Concise Theoretica,l Method .for

Profile-Drag Calculation. HACA ACR Ne. ll—BO5_, lOlill-.

Tetervin, Neal: A Method for the Bapid. Estimatlion of -
Turbulent Bou.nd.ary——La.ver Thicknesaes for Calcula.ting
Profile Drag NACA ACR No. LhGlli— 19hk,

Kalikhman, L. E.: A Kew Me’shod for Calcula.ting the Turbulent
Boundary Tayer and Determining the Separation Point. Comptes
Rendus de lt'Academie des Sciences de 1'URSS, 1943.

Vol. XXXVIII, no. 5 to 6, po. 165-169

Fa.lkner, V. M.: A New Law for Ca.lcula.*ing Drag. Ths
Resistance of & Smootn Flat Plate with Turbulent Bounda.ry
Layer. Alrcraft, Emgineering, vol. XV, no. 169, Mar, 1943, :
Pp. 65-69. ' -

von bermafn;-Th.: Turbulence and Skin Friction. * Jour. Aero.
Sci., vol. 1, no. 1, Jan. 193k; pp. 1-1G.

“Tetervin, Neal: Approximate Formulas for the Computation of

Turbulent Boundary—-l.ayer Momentum Thicknesses in ComPresai'ble
Flows. 'NACA ACR No. L6A22 1946,

Young, A. D., and Winterbottom, N. E : Note on'the Effebt of
- Compressibility on the Profile Drag of Asrofoils.in the
Absence of Shock Wawves, Rep. No. B.A. 1595, R.ALE.
(British Confidential ~ U. S Restricted.) R Ma.y 1911-0

Allen H. Julian, and Nitzberg, Gerald E.: The Effect of-
Comnressi’bili ty on the Growth of .the Laminar Boundary. .layer
on I.ow-—Drag Wlngs and Bodies. NAGA ACR J'a.n l9lx—3

“Young, A.D.: ~ e Ca.lcula.tion of the Fotal a.nd. Skin Friction
Drags of Bodies of Revolution at Zeroc Incid.ence. -R. & M.
Ro. 187k, British A.R.C., 1939. '



13.

1k

15.

1€,

7.

18.

21,

22.

23,

2k,

e, «____ NACA BM No. ATBO6

von Kérmén, Th., and Tsien, H.S.: Boundary Layer in
Compressible Fluids. Jour. Asro. Sci., vol 5, no. 6,
Apr. 1938, pp. 227-232, T

Theodoraen _Theodore'. Theory of Wing Sections of Arbitrary
Shape. NACA Rep. No._hll 1931

Allen, H. Julian: General Theory of Airfoil Sectione Having
Arbitrexry Shape or Pressure Distribution WACA ACR Xo.
3G29,. 1943, - e n.;¢~~~~.“l =

Goldstein, S.; A Theory of Aerofolls of Suall Thickness.
Part I — Veloclty Distribuclions for Symmetrical Aercofoils.
Rep. No. 580k, Part IT — Velocdty Distributions for
Cambered Aerofoils. Ren. No. 6156, 4.R.C. (British
Confidsntial ~ U, S Restricted), l°h2. - ’

Abbott,” Ira H. 'von Doerthoft, Albert E., and. stivers, Louis
- 8., Jr.: Summary of nirfoil Data. NACA ACR Wo. L“CO5,
19)4'5. : .oz ieoLa J;K-_r:.—a_—— e

Young, 4.D,, and Owen, P. R.: A Simplified Theory for
Streamline Bodileg:of Revolution and its Application to the
Development of High-Snesd Shapes, Rep. No. Aero. 1837,
R.A.E. {British Secret — U.S. Confidentisl), July 1943.

Kaplan, Carl: On a New Method for Calculating the Potentlal
Flow Past a Body of Revelution. NACA ARR, July 1942,

 Witzberg, Gerald E.: The Theoretical Calculation of Airfoil

Section Coefrliclents at Large Reynolds Numbers., NAiCA ACR
No. hIlE l9hL . _

Freeman, Hugh B.: Measurenents of Flow in the Boundary Layer
of & 1/h0-Scals Model of the U.S. Airship "ikron." HNACA
Rep. Fo. 430, 1932. ) - T

Freeman, Hugh B.: Force Measurements on a l/hO—Scale Model
of the U.S. Airship "Akron." NACA Rep. No. 432, 1932.

Hexriot, John G.: The Linear Perturbstion Theory of Axially
Symmetric Compressible Flow, with Applicetion to the -Effect
of Compressibility on the Pressure Coefficient at the Surface
of a Body of Revolution. NACA (Proposed ACR).

von Dosnhoff, Albert E., and Tetervin, Neal Déternination
of General Relations for the Behavicer of Turbulent Boundary
Layers. NAGA ACR No. 3G13, 19h3

an m———
-



TABIT T.— COMPARISON OF SECTION DRAG COEFFICTENT FOR SEPARATE
ATRTOIL SURFACES COMPUTED BY VARICUS METHODS

_.Section drag coefficlent, | cd_

|
Thicknieas : Reynolds agrpgzz o alugg::e __Reference 2 [ Referenne 1} Preaent re]_)ort
hord | mumber n T Fgmen 1T - ) N T e |
e - xfc of T, P. | xfc of T, P, | Upper Lowor | Upper | Lower | Upper . Lower
| surface surface | surface ! surface | swrface | surface
i H
0 | 108 0 0 | 0.0046 | 0.0046 | 0.0046 | 0.0046 | 0,0047 | 0.00MT
0 y 108 2 2. | +00kL 001 1,00k | .0Oke .00%0 | ,00L0
0 i 10° L i 0036 | .0036 ' 0034 | .003L 0035 ! .0035
0 ;107 0 0 0030 , .0030 ; .0030 ! ,0030 L0030 i .0030
0 P07 2 .2 L0026 ¢ L0026 1 .0025 | L0025 L0026 | ,0026
0 l 107 A R 0021 . 0021 ! .0021 .0021 L0021 i C,0021
0 5 x 107 0 0 .002k 002k | L0023 | .0023 0024 1,002k
b 108 177 A77 L0065 | 0050 | . .0063 | .0050 L0063 | .ooko
b 10° 376 376 0052 | .00BL I .0050 { .o0ko | .0OB1 | .OOKO
oLk 107 JLTT 277 0041 0031 | L00k0 5 L0031 .00kl ; .0031
Ak D107 .376 .376 0031 ! 0023 | .0030 | .0023 ,0031 ' ,0023
25 | 10° .189 196 .009L | .0066 | .00SL | .0065 | 0089 ! .0OG
.25 { 10% .386 . 396 L0067 "1 L0050 ¢ .0085:| 009 L0066 1 .0049
25 7 .189 196 L0057 | ..00kL | .QOED i L0051 .1 .0059 | .00k2
25 | 107 .386 .396 ,0038 . . 0029 il ,0038 il .002g .0039 i .0029

. - e ———
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TABLE IT.-- COMPARTSON COF EXPERTMENTAL DRAG COEFFICIENTS FOR

NACA OCl2 ATRFOIL SECTION AT ZERO ANGLIE OF ATTACK

WITH VALUES CALCULATED BY SEVETAL METHODS

.....

Section drag coefficient cd
Reynolde Ezperimbntal Calculated |Calculated | Calculated C;iggiized
% 10—8 mea.‘suremer__l’; refsrence 2 [reference 3| reference 5 | . report
=

2.675 0.007L | 0.007k 0.0067 0.0069 0.0067
3.780 0070 | LoorE" | ioo6D 0070’ bore 7
5.350 .0068 .0071 .0069 .00T0 .0068
7.560 L0067 | .00TL .0069 .0069 .0067

ATRSHIP SHAPE CALCULATED AT SEVERAL REYNOLDS
. WUMBERS AND AT VARIOUS TRANSTTION-
POINT LOCATIONS

Drag coeffic ient, CA

TABLE IIT.— THEORETICAL DRAG COEFFICTENTS OF AKRON

; ]
i }
Reynolds i Trensition | Present ' Reference 12 |
number | percent 1 | report : |
———h= — -+ -—.-g——-—--———-————-——-——-——-—E
108 ; k6 ! 0.00502 } 0.,00508
107 | h.6 I ,00343 | .00335 '
108 | 4.6 i .oo2us | .00235
108 i 25.7 | .00u3B . ,00LbE !
107 25.7 P 0028k 1 .00279
108 I e5.7 i .00198 ! .0018g
108 i 53.4 .00312 .00316 I
107 I 53.4h 1 .00173 L .00L76 ,
108 i 53.4% l L0011k | 1
N . ; L

.00115
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Figure 1.- Airfoill section with boundary layer.
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Figure 3.~ Body of revolution with boundary layer.
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Fig. 3b
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